新闻资讯
联系我们

地址:江苏省南京麒麟人工智能产业园
邮箱:hongqizhineng2017@163.com
电话:025-52128318
网址:www.jshongqi.cn
 
行业新闻
了解一下传统的 3-D AOI 技术
发表时间:2019-05-29  点击:486

传统的 3-D AOI 技术

从检测图像中可以萃取出不同类型的信息。其表面颜色一直被成功用于检查零部件在位 / 缺失。而对于焊点检测,要精确确定焊点质量,形状信息比颜色信息更有用。在零部件的颜色与基板颜色相似的情况下,形状信息也很有用。因此,在 AOI 系统中,捕获和重建 3-D 形状的能力是非常必要的。
PCB 检测所需的能在微米解析度水平下工作的传统 3-D 成像技术,包括立体成像、激光成型( laser profiling )和共聚焦显微镜技术。其中有些技术,如共聚焦扫描,对于在线检测来说费时太多,而另外一些技术,如传播时间方法( time-of-flight methods ),又不能提供 PCB 检测所需的解析度。
激光成型技术是一种成功应用于 AOI 系统中的 3-D 成像技术。一条激光细线与相机呈某一角度发射到检测目标上。然后就用这条细线在相机图像中的偏移来迅速确定照亮点的高度。在目标上扫描该激光线图案,就能构成目标表面完全的深度外形轮廓。
相同的三角测量方法扩展到了其他结构化光技术上,把栅格图案或复合频率扫描图案投射到目标表面,而消除了对目标表面进行扫描的需要。
尽管这些技术对许多种类的目标都是有效的,但对于焊点的镜像反射表面却效果不佳,因为光是以极窄范围的角度反射回来,很可能完全没有达到相机的光圈,结果导致目标高度不准确。
在立体成像技术中,采用两架相机从不同位置观察目标,拍摄目标的两个图像。为了获得 3-D 信息,先用搜索算法确定两张图像的哪些象素与目标上的点相对应(象素对应),依据是其图案 / 构造 / 边缘的匹配程度。其次,对每对相对应的象素的差异程度进行计算。已知相机间的距离和放大倍数,其差异值可转化为相机到目标的距离,进而形成关于可见目标表面的距离图。
在 AOI 中应用立体成像技术存在实际困难。为了解决象素对应的问题,两架相机的视域需要相当程度的重叠。在通常用于 PCB 检测的放大水平条件下,透镜必须安置在比大多数高质量透镜尺寸大小所允许的更近得多的位置上。于是,要么必须采用更低质量的占空间小的透镜,放大倍数减小;要么相机必须彼此呈某一角度放置,增加了透视全景校正的计算成本。对于那些表面图案很少的目标,如黑色元件或焊点的光滑金属表面,象素对应是模糊的,使得其差异结果分析不确定。由于把立体成像技术应用到 AOI 中出现的模糊性和复杂性,多台相机(有的 AOI 系统采用 10 台甚至更多)并不会自动形成 3-D 信息。
完全的深度外形轮廓并非描述目标形状的唯一方法。像表面倾斜这样的表面特性也提供关于目标形状的信息。有的 AOI 系统就是用来捕获这类信息的。在带有照明环的系统中,单一的相机对从不同角度照明的目标成像。以低角度照明光拍摄的图像显示出倾斜度大的区域,而以高角度光拍摄的图像则显示出平坦的区域。既然采用单架相机,单个图像采来的信息已经相互匹配,不再需要解决象素对应的问题。事实上,采用单相机和多照明的 AOI 系统,为开发出更加复杂的 3-D 成像系统提供了良好的起点。
机器视觉技术的优越性
总之,随着机器视觉技术自身的成熟和发展,可以预计它将在现代和未来制造企业中得到越来越广泛的应用